The Trash Trolls team believes deeply in the importance of science as the foundation for innovation and understanding. As part of this, we think it is important to be open and honest about the information which has helped to shape over creative endeavors.

  1. Ait-Benichou, S., Jugnia, L.-B., Greer, C. W., & Cabral, A. R. (2009). Methanotrophs and 

    methanotrophic activity in engineered landfill biocovers. Waste Management, 29(9), 2509–2517. doi: 10.1016/j.wasman.2009.05.005

  2. Alexy, P., Lacı́k Igor, Simkova, B., Bakos, D., Pronayova, N., Liptaj, T., … Varosova, M. 
    (2003). Effect of melt processing on thermo-mechanical degradation of poly(vinyl alcohol)s. Elsevier , 85(3), 823–830. Retrieved from

  3. Alperin, M. J., & Hoehler, T. M. (2009). Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic and physical constraints. American Journal of Science, 309(10), 869–957. doi: 10.2475/10.2009.01

  4. Aoki, M., Ehara, M., Saito, Y., Yoshioka, H., Miyazaki, M., Saito, Y., … Imachi, H. (2014). A Long-Term Cultivation of an Anaerobic Methane-Oxidizing Microbial Community from Deep-Sea Methane-Seep Sediment Using a Continuous-Flow Bioreactor. PLoS ONE, 9(8). doi: 10.1371/journal.pone.0105356

  5. Barlaz, M. A. Landfill Chemistry and Microbiology, Landfill Chemistry and Microbiology 
    (n.d.). Retrieved from

  6. Bodelier, P. Bypassing the methane cycle. Nature 523, 534–535 (2015).

  7. Bürgmann, H. (2011). Methane Oxidation (Aerobic). Encyclopedia of Geobiology, 575–578. doi:

  8. Carini, S., Bano, N., Lecleir, G., & Joye, S. B. (2005). Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA). Environmental Microbiology, 7(8), 1127–1138. doi: 10.1111/j.1462-2920.2005.00786.x

  9. Chai, W.-L., Chow, J.-D., Chen, C.-C., Chuang, F.-S., & Lu, W.-C. (2009). Evaluation of the 
    Biodegradability of Polyvinyl Alcohol/Starch Blends: A Methodological Comparison of Environmentally Friendly Materials. Journal of Polymers and the Environment , 17, 71–82. doi: DOI 10.1007/s10924-009-0123-1

  10. Chiellini, E., Corti, A., D’Antone, S., & Solaro, R. (2003). Biodegradation of poly (vinyl 
    alcohol) based materials. Elsevier, 28(6), 963–1014. Retrieved from

  11. Conrad, R. (2007). Microbial Ecology of Methanogens and Methanotrophs. Advances in Agronomy, 1–63. doi: 10.1016/s0065-2113(07)96005-8

  12. Cui, M., Ma, A., Qi, H., Zhuang, X., & Zhuang, G. (2015). Anaerobic oxidation of methane: an "active" microbial process. MicrobiologyOpen
    4(1), 1–11.

  13. Dekas, A. E., Connon, S. A., Chadwick, G. L., Trembath-Reichert, E., & Orphan, V. J. (2015). Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. The ISME Journal, 10(3), 678–692. doi: 10.1038/ismej.2015.145

  14. DeMerlis, C. C., & Schoneker, D. R. (2003). Review of the oral toxicity of polyvinyl alcohol 
    (PVA). Elsevier, 41(3), 319–326. Retrieved from

  15. Dong, J., Ding, L., Wang, X., Chi, Z., & Lei, J. (2015). Vertical Profiles of Community Abundance and Diversity of Anaerobic Methanotrophic Archaea (ANME) and Bacteria in a Simple Waste Landfill in North China. Applied Biochemistry and Biotechnology, 175(5), 2729–2740. doi: 10.1007/s12010-014-1456-3

  16. EPA. (2020, April 10). Overview of Greenhouse Gases. Retrieved May 27, 2020, from

  17. EPA. (2020, May 04). Basic Information about Landfill Gas. Retrieved May 27, 2020, from

  18. Ettwig, K. F., Butler, M. K., Paslier, D. L., Pelletier, E., Mangenot, S., Kuypers, M. M. M., … Strous, M. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288), 543–548. doi: 10.1038/nature08883

  19. Francis, L. F. (2016). Chapter 3 - Melt Processes. Academic Press, 105–249. Retrieved from

  20. Girguis, P. R., Orphan, V. J., Hallam, S. J., & Delong, E. F. (2003). Growth and Methane Oxidation Rates of Anaerobic Methanotrophic Archaea in a Continuous-Flow Bioreactor. Applied and Environmental Microbiology, 69(9), 5472–5482. doi: 10.1128/aem.69.9.5472-5482.2003

  21. Girguis, P. R., Cozen, A. E., & Delong, E. F. (2005). Growth and Population Dynamics of Anaerobic Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in a Continuous-Flow Bioreactor. Applied and Environmental Microbiology, 71(7), 3725–3733. doi: 10.1128/aem.71.7.3725-3733.2005

  22. Grillo, R. J. (2014). Energy Recycling – Landfill Waste Heat Generation and Recovery. Current Sustainable/Renewable Energy Reports, 1(4), 150–156. doi: 10.1007/s40518-014-0017-2

  23. Grossman, E. L., Cifuentes, L. A., & Cozzarelli, I. M. (2002). Anaerobic Methane Oxidation in a Landfill-Leachate Plume. Environmental Science & Technology, 36(11), 2436–2442. doi: 10.1021/es015695y

  24. Guerrero-Cruz, S., Cremers, G., Alen, T. A. V., Huub J. M. Op Den Camp, Jetten, M. S. M., Rasigraf, O., & Vaksmaa, A. (2018). Response of the Anaerobic Methanotroph “CandidatusMethanoperedens nitroreducens” to Oxygen Stress. Applied and Environmental Microbiology, 84(24). doi: 10.1128/aem.01832-18

  25. Halima, N. B. (2016). Poly(vinyl alcohol): review of its promising applications and insights into 
    biodegradation. RSC Advances, (46). Retrieved from

  26. Harwood, J. H., & Pirt, S. J. (1972). Quantitative Aspects of Growth of the Methane Oxidizing Bacterium Methylococcus capsulatus on Methane in Shake Flask and Continuous Chemostat Culture. Journal of Applied Bacteriology, 35(4), 597–607. doi: 10.1111/j.1365-2672.1972.tb03741.x

  27. Hmiel, B., Petrenko, V. V., Dyonisius, M. N., Buizert, C., Smith, A. M., Place, P. F., … Dlugokencky, E. (2020). Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions. Nature, 578(7795), 409–412. doi: 10.1038/s41586-020-1991-8

  28. Ho, A., Lüke, C., Reim, A., & Frenzel, P. (2016). Resilience of (seed bank) aerobic methanotrophs and methanotrophic activity to desiccation and heat stress. Soil Biology and Biochemistry, 101, 130–138. doi: 10.1016/j.soilbio.2016.07.015

  29. Huber-Humer, M., Gebert, J., & Hilger, H. (2008). Biotic systems to mitigate landfill methane emissions. Waste Management & Research, 26(1), 33–46. doi: 10.1177/0734242x07087977

  30. Karaogul, E., Altuntas, E., Salan, T., & Alma, M. H. (2018). The Effects of Novel Additives 
    Used in PVA/Starch Biohybrid Films. IntechOpen. doi: DOI: 10.5772/intechopen.81727

  31. Knittel, K., & Boetius, A. (2009). Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annual Review of Microbiology, 63(1), 311–334. doi: 10.1146/annurev.micro.61.080706.093130

  32. Leak, D. J., & Dalton, H. (1986). Growth yields of methanotrophs. Applied Microbiology and Biotechnology, 23(6), 470–476. doi: 10.1007/bf02346062

  33. Overview of Greenhouse Gases. (2019, April 11). Retrieved March 10, 2020, from

  34. Roohani, M., Habibi, Y., Belgacem, N. M., Ebrahim, G., Karimi, A. N., & Dufresne, A. 
    (2008). Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Elsevier, 44(8), 2489–2498. Retrieved from

  35. Sadhu, S. D., Soni, A., Varmani, S. G., & Garg, M. (2014). Preparation of Starch-Poly Vinyl 
    Alcohol (PVA) Blend Using Potato and Study of Its Mechanical Properties. International Journal of Pharmaceutical Science Invention, 3(3). Retrieved from

  36. Salleh, M. S. N., Mohamed Nor, N. N., Mohd, N., & Syed Draman, S. F. (2017). Water 
    resistance and thermal properties of polyvinyl alcohol-starch fiber blend film. AIP Conference Proceedings. Retrieved from

  37. Seenivasagan, R., Kasimani, R., Babalola, O. O., Karthika, A., Rajakumar, S., & Ayyasamy, P. (2017). Effect of various carbon source, temperature and pH on nitrate reduction efficiency in mineral salt medium enriched with Bacillus weinstephnisis (DS45). Groundwater for Sustainable Development, 5, 21–27. doi: 10.1016/j.gsd.2017.03.002

  38. Song, J. H., Murphy, R. J., Narayan, R., & Davies, G. B. H. (2009). Biodegradable and compostable alternatives to conventional plastics. Philosophical transactions of the royal society B: Biological sciences, 364(1526), 2127-2139.

  39. Spokas, K., Bogner, J., Chanton, J., Morcet, M., Aran, C., Graff, C., … Hebe, I. (2006). Methane mass balance at three landfill sites: What is the efficiency of capture by gas collection systems? Waste Management, 26(5), 516–525. doi: 10.1016/j.wasman.2005.07.021

  40. Strong, P. J., Xie, S., & Clarke, W. P. (2015). Methane as a Resource: Can the Methanotrophs 
    Add Value? Environmental Science & Technology, 49(7), 4001–4018. doi:

  41. Trotsenko, Y. A., & Khmelenina, V. N. (2001). Biology of extremophilic and extremotolerant methanotrophs. Archives of Microbiology, 177(2), 123–131. doi: 10.1007/s00203-001-0368-0

  42. Trotsenko, Y. A., & Murrell, J. C. (2008). Metabolic Aspects of Aerobic Obligate Methanotrophy⋆. Advances in Applied Microbiology Volume 63, 63, 183–229. doi: 10.1016/s0065-2164(07)00005-6

  43. Verma, N., Kaur, M., & Tripathi, A. K. (2019). Greenhouse Gas Emissions from Municipal Solid Waste Management Practice. Environmental Concerns and Sustainable Development, 399–408. doi: 10.1007/978-981-13-6358-0_17

  44. Ward, N., Larsen, Ø., Sakwa, J., Bruseth, Khouri, H., Durkin, A. S., … Eisen, J. A. (2004). 
    Genomic Insights into Methanotrophy: The Complete Genome Sequence of Methylococcus capsulatus (Bath). PLoS Biology, 2(10),1616-1628. doi: 10.1371/journal.pbio.0020303 

  45. Winkel, M., Mitzscherling, J., Overduin, P. P., Horn, F., Winterfeld, M., Rijkers, R., … Liebner, S. (2018). Anaerobic methanotrophic communities thrive in deep submarine permafrost. Scientific Reports, 8(1). doi: 10.1038/s41598-018-19505-9

  46. Wise, M. G., Mcarthur, J. V., & Shimkets, L. J. (1999). Methanotroph Diversity in Landfill Soil: Isolation of Novel Type I and Type II Methanotrophs Whose Presence Was Suggested by Culture-Independent 16S Ribosomal DNA Analysis. Applied and Environmental Microbiology, 65(11), 4887–4897. doi: 10.1128/aem.65.11.4887-4897.1999

  47. Wu, M. L., Teeseling, M. C. F. V., Willems, M. J. R., Donselaar, E. G. V., Klingl, A., Rachel, R., … Niftrik, L. V. (2011). Ultrastructure of the Denitrifying Methanotroph "Candidatus Methylomirabilis oxyfera," a Novel Polygon-Shaped Bacterium. Journal of Bacteriology, 194(2), 284–291. doi: 10.1128/jb.05816-11